Nonsingular Robust Covariance Estimation in Multivariate Outlier Detection

نویسندگان

  • Maximilian Wang
  • Rebecca Martin
  • Guifen Mao
چکیده

Rousseeuw’s minimum covariance determinant (MCD) method is a highly robust estimator of multivariate mean and covariance. In practice, the MCD covariance estimator may be singular. However, a nonsingular covariance estimator is required to calculate the Mahalanobis distance. In order to fix this singular problem, we propose an improved version of the MCD estimator, which is a combination of the maximum likelihood estimator and the classical unbiased estimator. This estimator is nonsingular, robust, and as good as the MCD estimator with the same computational complexity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate Outlier Detection and Robust Covariance Matrix Estimation

In this article, we present a simple multivariate outlier-detection procedure and a robust estimator for the covariance matrix, based on the use of information obtained from projections onto the directions that maximize and minimize the kurtosis coefŽ cient of the projected data. The properties of this estimator (computational cost, bias) are analyzed and compared with those of other robust est...

متن کامل

Simultaneous robust estimation of multi-response surfaces in the presence of outliers

A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...

متن کامل

Outlier Detection for Support Vector Machine using Minimum Covariance Determinant Estimator

The purpose of this paper is to identify the effective points on the performance of one of the important algorithm of data mining namely support vector machine. The final classification decision has been made based on the small portion of data called support vectors. So, existence of the atypical observations in the aforementioned points, will result in deviation from the correct decision. Thus...

متن کامل

Identification of outliers types in multivariate time series using genetic algorithm

Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...

متن کامل

Multivariate outlier detection with compositional data

Multivariate outlier detection is usually based on Mahalanobis distances, by plugging in robust estimates of location and covariance. For compositional data, carrying only relative information, a special transformation needs to be consulted in order to be able to work in the appropriate geometry. The effect of the transformation is discussed in this contribution. Furthermore, different possibil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015